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Engineered tendon fibroblast and collagen-based soft tissue constructs have been devel-
oped to characterize growth and remodeling in soft tissue via in-vitro studies of the effects
of controlled mechanical interventions on collagen content and orientation. Growth and
remodeling often occur simultaneously in soft tissue. The present contribution distin-
guishes these separate biological processes and develops the theoretical frameworks for
the formation of constitutive theories of each. Remodeling is considered a motion in ma-
terial space that occurs at constant mass whereas growth is a change in concentration
due to mass transport and is treated via a system open with respect to mass. Examples
illustrating both biological processes are presented.

1 Introduction

Understanding growth and remodeling processes in tendon in health and disease is of
great interest because of the role of tendon in transmitting forces produced by muscles
during movement. Tendon is also an excellent testbed for studying collagen growth and
remodeling processes in soft tissue because it is relatively acellular and avascular. Mature
tendon consists largely of type I collagen. Therefore the mechanical properties of mature
tendon can be largely attributed to the parallel collagen fibrils that comprise approxi-
mately 75% [Nordin (2001)] of its dry weight. Growth and remodeling experiments on
soft tissue are challenging for many reasons as the data in Figure 1 demonstrate [Arruda
et al. (2005)]. The normal tibialis anterior (TA) tendon of a rat is functionally graded
along its length. In addition to measuring mechanical properties locally (achieved here
via local optical strain measurement), assays for collagen content, cross-linking and cell
expression must all be applied locally to formulate relationships between the biochem-
ical variables and the mechanical properties. Knowledge of in vivo mechanical loading
histories in tendon is very difficult to obtain and under much less control. Yet it is clear
that mechanical loading is critical to collagen growth and remodeling as can be seen for
example in Figure 1 in which a TA tendon that has been unloaded in vivo for a period
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Figure 1. Mechanical response curve of the mature TA tendon of the rat at three local regions
along the length of the tendon: BONE, distal end (near the bone); FC, fibrocartilage mid-
section; and MUSCLE, proximal end (near the muscle). The average response AVERAGE
along the length is also shown. A Normal tendon is functionally graded, B After five weeks
of unloading the previously compliant tendon regions have stiffened and the response is very
uniform along its length.

of time is no longer functionally graded; regions that were relatively compliant under
normal loading have undergone significant growth or remodeling to stiffen [Arruda et al.
(2005)]. The so-called toe-region or initially compliant non-linear portion of the normal
tendon is truncated as a result of the unloading and the tendon prematurely stiffens with
increased tangent stiffness.
To conduct controlled experiments of the effects of mechanical loading on collagen growth
and remodeling we have developed in-vitro models of soft tissue constructs comprised
largely of type I collagen and tendon fibroblasts (tenocytes), and functional bioreactors
for the application of cyclic mechanical interventions. The tissue engineering methods are
described in Section 2 along with preliminary data demonstrating the growth response
of the cells in these constructs subjected to static and cyclic mechanical loading proto-
cols. Continuum level mathematical models of growth in soft tissue are currently a very
active area of research [Epstein and Maugin (2000); Klisch and van Dyke (2001); Taber
and Humphrey (2001); Humphrey and Rajagopal (2002); Kuhl and Steinmann (2002);
Sengers et al. (2004)]. These models all consider the addition of mass as at least a subset
of the phenomenon of growth. Some consider a single species (e.g. collagen) and consider
its increasing mass. Others specifically include the transport of the growing species in
a system that is open with respect to mass. Some of these formulations also describe
a change in structural organization as a growth response. The present formulation, de-
scribed in Sections 3 and 4, distinguishes between changes in material configurations at
constant mass and growth processes. The former, described in Section 3, is treated as a
motion in material space and is termed remodeling. The growth treatment in Section 4
describes transport of species such as nutrients and enzymes involved in tissue growth
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along with the tissues fluid species, and not the mass transport of the growing extra-
cellular collagen matrix itself. This is in contrast to the previous treatments in which
the growing species (e.g. collagen) diffuses, but it is consistent with many physiologically
relevant homeostatic tissue growth phenomena found in soft tissue growth.

2 Engineered Tissue Constructs

For growth and remodeling studies, tendon constructs have been engineered in vitro using
two techniques, self-organization of tenocytes around their autogenous collagen scaffold
and tenocyte-induced contraction of fibrin gels. Functional bioreactors were designed and
built for mechanical testing of constructs and also cyclic load intervention studies. Pre-
liminary data have been collected that demonstrate cyclic mechanical loading increases
collagen content and improves mechanical properties of the engineered constructs.

2.1 Experimental Methods

This section briefly describes the engineered construct methods. See Calve et al. (2004)
for the detailed protocols for self-organized tendon constructs and Andrick et al. (2005)
for more information on the formation of constructs by fibrin gel contraction.

Self-organized construct formation

Primary rat tendon fibroblasts were dissociated from Achilles tendons of Fischer 344 re-
tired breeders and suspended in growth medium containing Ham F-12, 20% fetal bovine
serum (FBS) and 1% antibiotic-antimycotic (Invitrogen 10437). The cells were expanded,
passaged at approximately 60% confluence and stored in liquid nitrogen until needed.
Preparation of 35-mm culture plates involved coating with 1.5 mL of silicone elastomer
(SYLGARD), curing the SYLGARD for two weeks, rinsing, then adding natural mouse
laminin in Dilbecco’s phosphate-buffered saline (DPBS) and allowing the DPBS to evap-
orate. Two size 0 laminin-coated silk sutures were pinned 12 mm apart into the laminin-
coated substrate and the plates were filled with enough growth medium to cover the
sutures then sterilized. The growth medium was aspirated and 200,000 cells suspended
in 2 mL growth medium were seeded onto each plate and supplemented with ascorbic
acid. Media were changed every 2-3 days until cells reached confluency after about 5
days. The medium was changed to differentiation medium (Dulbecco’s Modified Eagle
Medium containing 7% horse serum and 1% antibiotic-antimycotic) at 2-3 day intervals
until constructs formed and were ready for mechanical intervention or testing. Construct
formation occurred over a two-week period by the progressive delamination of the cell
and autogenous collagen layer beginning at the outer periphery of the culture plate. The
constructs formed into cylinders of length 12 mm and attached at their ends to the suture
pins. The constructs remained viable for several weeks in culture under static tension due
to cell contraction. A formed construct 3 months after plating is shown in Figure 2.
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Figure 2. A 12-mm long self-organized engineered
tendon construct in culture and suspended above the
SYLGARD substrate via pinned silk sutures at its
ends. The construct is shown at three months after
cell plating [Calve et al. (2004)].

Contracted fibrin gel formation

Tenocytes were isolated from the Achilles tendon of Sprague Dawley rats using similar
protocols as described above for the self-organized constructs. Culture plates were also
prepared similarly; however, an oval (5 mm X 15 mm) polydimethylsiloxane (PDMS)
mold was pressed into the center of the plates prior to sterilization and cell plating. The
growth medium was supplemented with 10 units/mL of thrombin and agitated. Fibrino-
gen was added and polymerized by the thrombin within 10 minutes. About 15 minutes
after gel formation 100,000 tenocytes were seeded on the gel and the culture plates were
incubated until ready for mechanical intervention or testing. The growth medium was
changed after 2 days to differentiation medium to promote collagen deposition because
constructs had completely formed around the oval molds.

Histology

Self-organized constructs were prepared for electron microscopy using histological meth-
ods described in Calve et al. (2004). Electron microscopy revealed the constructs con-
tained 60 nm diameter collagen fibers oriented along the main axis of the construct,
closely resembling the morphology of neonatal tendon. Histology methods for the fibrin-
based constructs may be found in Andrick et al. (2005). Longitudinal sections stained
with either Massons trichrome or picosirius red at three weeks after seeding showed that
the cells have digested much of the fibrin and deposited and organized a collagen matrix.

Mechanical testing

Constructs formed by either approach were attached to functional bioreactors for cyclic
mechanical loading. The constructs remained in culture and were attached to a stepper
motor at one end and held fixed at the other end. The stepper motor was commissioned
to cyclically strain the constructs between +10 and −10% at 0.1 Hz for 7 days. The
mechanical response curves of the constructs were determined using an optical device for
in situ strain determination during tensile loading; details may be found in Arruda et
al. (2005). Briefly, constructs were kept in a saline solution, their cross-sectional areas
were determined by several diameter measurements, then they were attached to stepper
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Figure 3. A Tenocytes in self-organized constructs are mechanoresponsive to static stretch.
Collagen content vs. time in culture (first four bars) or animal age. B Tenocytes in fibrin-based
constructs respond to cyclic stretching [Stretch] by depositing a greater than two-fold increase
in collagen after one week of cyclic stretching compared to controls [CTL].

motors at either end, one end via an optical force transducer, and marked with India
ink spots at several equal intervals along their lengths. Labview software controlled both
servomotors as well as a digital video camera attached to a Nikon dissecting microscope.
Constructs were loaded at a constrant strain rate, without preconditioning until failure
and synchronized force and image recordings were collected and converted to nominal
stress vs. nominal strain data.

Collagen content determination

The hydroxyproline assay of Woessner (1961) was used to determine collagen content in
the constructs by assuming the hydroxyproline accounts for 13.8% of the total type I
collagen.

2.2 Experimental Results

The tenocytes in the self-organized tendon constructs are mechanically responsive to
static tensile stretch. Cells in control constructs held in bioreactors and in culture at the
as-formed lengths respond to static tension by depositing collagen. Figure 3 demonstrates
that the collagen content in the constructs increases over time as the construct grows.
This response is similar to the growth response of tendon in vivo as an animal ages.
The tenocytes in the engineered constructs also respond to cyclic stretching as shown
in Figure 3. The collagen content increases as a result of cyclic stretching over that in
the control constructs suggesting these constructs constitute a viable in vitro model for
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characterizing and determining evolution laws for collagen growth in soft tissue. Collagen
growth is manifested in the stress-strain response curves of the tendon constructs as
improvements in the mechanical properties associated with tendon function. Figure 4
demonstrates that cyclic stretching results in an evolution of the construct response curve
towards that of native young tendon as the collagen content is increased, characterized
by improved tangent stiffness and strength over those of controls held under static stretch
for an equivalent amount of time.
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Figure 4. Stress-strain response curves of
self-organized tendon constructs with (solid
line) and without (line with symbols) cyclic
stretching for approximately one week. The
result of cyclic stretching includes an evolu-
tion of the mechanical properties of the con-
struct, such as the shape of the initial toe re-
gion, tangent modulus and strength, towards
those of young native tendon.

3 Mathematical Modeling of Remodeling

The mathematical model of remodeling in biology is treated as a motion in material space
or configurational change. Further details of this remodeling framework may be found in
Garikipati et al. (2005). The kinematics of remodeling are illustrated in Figure 5. The
deformation gradient of the overall material motion is F and admits the multiplicative
decomposition F = F∗KcKr, where Kr is the tangent map to the preferred remodeled
state that a region would attain if it were free to remodel according to the local cellular
mechanotransductive responses. Evolution laws based on experimental results from, e.g.,
uniformly remodeling tissue would yield Kr. It is incompatible in general because of
constraints placed on the region by the surroundings and Kc represents the compatibility
restoring tangent mapping to the remodeled configuration. The deformation gradient F∗

maps to the current configuration.

3.1 Outline of Remodeling Theory

The mechanical theory may be examined by minimizing the following potential energy
functional in the remodeled configuration Ω∗

t and the total material motion κ+ u∗:

Π[u∗, κ] :=

∫

Ω∗

t

ψ̂∗(F∗,Kc,X∗)dV∗ −

∫

Ω∗

t

f∗ · (u∗ + κ)dV∗ −

∫

∂Ω∗

t

t̄∗ · (u∗ + κ)dA∗

(1)
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Figure 5. The kine-
matics of remodeling
[Garikipati et al. (2005)].

where κ is the motion of a point in material space (configurational change), u∗ is the

displacement, ψ∗ = ψ̂∗(F∗,Kc,X∗) is the stored energy function and is assumed to
depend on the compatibility restoring motion Kc in addition to F∗, f∗ is the body force
and t̄∗ is the surface traction. Stationarity is assumed with respect to both displacements
u∗ and κ. Standard manipulations using variational calculus lead to the Euler-Lagrange
equations that can be localized to the relations in Ω∗

Div∗P∗ + f∗ = 0 (2)

−Div

[

ψ∗I − F∗TP∗ +
∂ψ∗

∂Kc
KcT

]

+
∂ψ∗

∂X∗
= 0, (3)

and on ∂Ω∗

P∗N∗ = t̄∗ (4)

[

ψ∗I − F∗TP∗ +
∂ψ∗

∂Kc
KcT

]

N∗ = 0 (5)

where P∗ is the first Piola-Kirchhoff stress, ψ∗I − F∗TP∗ = E is the Eshelby stress and
∂ψ∗

∂Kc K
cT = Σ is an additional configurational stress arising from the assumption that the

configurational change stores energy. The remodeling is subjected to restrictions placed
by the dissipation inequality for the mechanical theory, written in terms of the Kirchhoff
stress

τ = det[K]
∂ψ∗

∂F∗
F∗T (6)

as
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τ : (ḞF−1) −
∂

∂t
(det[K]ψ∗) ≥ 0, (7)

where K = KcKr. This leads to the following reduced dissipation inequality, placing a
restriction on the evolution law for Kr and on the functional form of the extra configu-
rational stress Σ:

− det[K](E + Σ) : (K̇cKc−1) − det[K]E : (KcK̇rK−1) − det[K]
∂ψ∗

∂X∗
≥ 0. (8)

3.2 A Remodeling Example

The remodeling theory is illustrated using the anisotropic eight-chain model of Bischoff et
al. Bischoff et al. (2002a,b) to describe a collagen network in a soft tissue such as tendon.
Consider the case of a local tendon region initially described by the network in Figure 6A,
characterized by the fiber angle θ0 as shown. If the tendon were stretched uniaxially its
true stress vs. true strain response curve would follow the dashed trace in Figure 6C
as the collagen fibers orient via an affine transformation that is the tangent map of
the incompressible deformation of the tissue. The network is hyperelastic, and in the
absence of remodeling, it loads and unloads along the non-linear dashed path to return
to the reference configuration of Figure 6A with the fibers returning to their original
orientation as the deformation is removed. If instead the tendon region is described by
a different fiber direction θ as shown in Figure 6B, its response curve would follow the
solid hyperelastic trace in Figure 6C.
This remodeling example is simplified for purposes of illustration to assume the entire
tissue is homogeneous, moreover it remodels homogeneously and therefore the remod-
eling is compatible. The kinematics illustrated in Figure 5 are simplified for this case
to Kc = I which greatly simplifies the reduced dissipation inequality above. The first
term is eliminated because K̇c = 0 and the third term is also zero because the strain
energy density function is assumed uniform throughout the homogeneous tissue. The re-
maining term in the reduced dissipation inequality is also simplified in this case and the
restriction placed on the remodeling evolution law, K̇r, is simplified by the requirement
that the fibers in the network remodel towards the principal tensile stretch direction
during uniaxial tension loading. We now consider remodeling during uniaxial loading of
the network in Figure 6A such that the collagen fibers remodel towards the principal
stretch direction in addition to deform in an affine manner during each loading step. The
gradual remodeling evolves the reference configuration of the collagen fibers from that
of Figure 6A to that of Figure 6B during the deformation to a true strain of 0.5. At the
end of this loading step the tissue is fixed in its evolved configuration and unloaded. The
response of the remodeling tissue is shown by the trace with symbols in Figure 6C. The
simulation demonstrates that as the remodeling occurs during loading the network stores
less strain energy at any given applied deformation level than it does if it deforms without
remodeling. Remodeling occurs in this manner to relieve the excess strain energy of the
applied deformation in much the same way tissue is hypothesized to remodel in response
to increases in loading such as during exercise. The network is fixed in the remodeled
configuration at the end of loading, and no further evolution of the microstructure occurs
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Figure 6. Numerical simula-
tion of uniform remodeling of an
anisotropic network during uniaxial
deformation. A Hyperelastic net-
work and original reference config-
uration of network that remodels
during deformation, B Hyperelas-
tic network and remodeled refer-
ence configuration of network that
has remodeled during uniaxial load-
ing, C Hyperelastic load-unload re-
sponse curves for two distinct net-
works (i.e. (A), dashed curve; and
(B), solid curve), and an addi-
tional response curve (with sym-
bols) of a network that remodels
from reference configuration (A) to
remodeled reference configuration
(B) during uniaxial loading and
is fixed in remodeled configuration
during unloading.

as the network is unloaded. The change in reference configuration is evidenced by the
permanent deformation that remains upon fully unloading.

4 Mathematical Modeling of Growth

The continuum thermodynamics treatment of a system that is open with respect to mass
to allow species concentration changes due to mass transport is now considered. The
full details of the theory may be found in Garikipati et al. (2004). It is outlined here
to demonstrate the differences between the growth and remodeling theories and to il-
lustrate a simple growth example. The kinematical framework assumes local growth by
Fg resulting in an incompatible tissue. Elastic deformation by F̃e restores compatibility
resulting in internal stresses. The applied elastic deformation is F̄e. The entire mapping
admits the multiplicative decomposition F̄eF̃eFg. Multiple species are modeled in the
continuum setting. The biological processes by which nutrients are transported and con-
verted to living tissue are described mathematically by sources and sinks. Fluxes are
introduced for each species diffusing through the solid phase. In the soft tissue applica-
tion of tendon the solid phase is type I collagen. Mass balance for a species i is given as
∂ρi

0

∂t
= Πi −∇ · Mi, where ρ0 is the concentration, Π is the source term (or sink term)

and M is the mass flux vector of the species. The simplest illustrative example of the the-
ory involves two species, the solid collagen phase and a fluid phase. The latter is assumed
to carry nutrients, enzymes, proteases etc. involved in the synthesis and breakdown of
the collagen phase but the two-species approximation assumes these reaction products do
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not diffuse relative to the fluid phase. Mass balance for the solid phase becomes
∂ρs

0

∂t
= Πs

and for the fluid phase it is
∂ρ

f

0

∂t
= −∇ · Mf . Balance of linear and angular momenta and

energy are considered for each species and momenta and energy transfer among species
are allowed by introducing qi, the force per unit mass exerted on species i by the other
species present, and an interaction energy term ẽi transferred to species i by all other
species per unit mass of i. The full development of these equations is rather lengthy and
the reader is referred to Garikipati et al. (2004) for the details. The entropy production
inequality holds for the system as a whole. It is combined with the energy equation and
balance laws to derive the following reduced entropy inequality for growth processes

∑

i

(

ρi0
∂ei

∂Fei
− Pi(Fgi)T

)

: Ḟei+
∑

i

ρi0

(

∂ei

∂ηi
− θ

)

∂ηi

∂t
+

∑

i

(

ρi0
∂

∂t
(V + Vi) − ρi0g −∇ · Pi + ∇(V + Vi)Mi

)

· ∇

+
∑

i

(

ρi0F
i−T

(∇ei − θ∇ηi)
)

· ∇ +
∑

i

Πi

(

ei +
1

2
‖ Vi ‖

)

+

∇θ · Qi

θ
+

∑

i

ρi0
∂ei

∂ρi0

∂ρi0
∂t

−
∑

i

Pi :
(

∇Vi + Fei
Ḟgi

)

≤ 0 (9)

where for species i, Pi is the partial first Piola-Kirchhoff stress, ei is the internal energy
per unit mass, ηi is the entropy per unit mass, Vi is the velocity relative to the solid
phase velocity V, and Qi is the partial heat flux vector. Also, g is the body force and θ is

temperature. Constitutive assumptions of the form ei = êi
(

Fei, ηi, ρi
0

)

are made for the

thermodynamic variables to obtain the following restrictions on the constitutive relations

from the reduced entropy inequality: PiFgiT = ρi0
∂ei

∂Fei , hyperelastic constitutive laws for

the partial stresses; θ = ∂ei

∂ηi ρ
i
0, temperature definition; Qi = −Ki∇θ, the Fourier Law

of heat conduction; and a constitutive relation for the flux as a product of a mobility and
a thermodynamic driving force in which the full coupling between mechanics and mass
transport emerges,

Mi = Di ·
[

ρi0F
Tg + FT∇ · Pi − ρi0

(

∇ei − θ∇ηi
)]

(10)

Specifically, mass transport is driven by an inertia term, a body force term (e.g. gravity),
a stress divergence term such as pressure gradient and a chemical potential gradient. This
last term includes strain gradient-dependent diffusion through the gradient in internal
energy term and a concentration gradient-dependent diffusion arising from the mixing
entropy. This theory has been implemented in the general purpose finite element pro-
gram FEAP using the anisotropic eight-chain hyperelastic constitutive law of Bischoff
et al. (2002a) for the solid collagen phase and a growth law for collagen that prescribes
conversion to solid if the fluid concentration exceeds a preset value. A cylindrical con-
struct of the size of the in vitro tendon construct models described earlier is simulated.
It is assumed to initially contain a uniform solid volume fraction of 0.5. The stress-strain
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response curve for this construct is first simulated without allowing growth and axially
deforming it. The construct is then placed in a fluid bath and the collagen concentration
is commissioned to increase locally if the fluid concentration in the construct exceeds its
initial value of 0.5. When placed in the fluid bath the construct swells as fluid flows from
the high concentration bath to the low concentration construct. Solid is grown because
of the rise in fluid concentration; this results in further swelling of the construct. The
average final solid concentration is approximately 0.6. After a period of growth the consti-
tutive properties of the construct are again simulated by conducting a tensile test without
allowing further growth. The results appear in Figure 7 as stress on the vertical axis and
extension on the horizontal. They may be compared with the experimental results of
growth in Figure 4 to show the theory is capable of capturing the non-linear constitutive
response of the tendon constructs and correctly predicts the qualitative change in tan-
gent modulus with collagen growth. However, further experiments of the type introduced
here using in vitro soft tissue models are needed to provide accurate evolution laws for
mathematical growth theories.
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5 Conclusions

Separate theories of growth and remodeling have been outline to illustrate that remodel-
ing may occur at constant mass and is a configurational change whereas growth involves
a change in the concentration of species. Engineered tendon constructs were generated
for growth and remodeling studies. The constructs demonstrate mechanically responsive
cells, grow and remain viable in culture for several weeks. They are excellent in vitro
models for growth studies.
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